Monday, August 31, 2009

SCCT 1023(A) 30 August 2009 Sunday

Today, Miss Azura teached us about the chapter 5 part two...we learn more about communication device, LAN and more...After that, she want us to find some information about the MESH TOPOLOGY and TREE TOPOLOGY...
MESH TOPOLOGY

A type of network setup where each of the computers and network devices are interconnected with one another, allowing for most transmissions to be distributed, even if one of the connections go down. This type of topology is not commonly used for most computer networks as it is difficult and expensive to have redundant connection to every computer. However, this type of topology is commonly used for wireless networks. Below is a visual example of a simple computer setup on a network using a mesh topology:
TREE TOPOLOGY


Also known as a hierarchical network.


The type of network topology in which a central 'root' node (the top level of the hierarchy) is connected to one or more other nodes that are one level lower in the hierarchy (i.e., the second level) with a point-to-point link between each of the second level nodes and the top level central 'root' node, while each of the second level nodes that are connected to the top level central 'root' node will also have one or more other nodes that are one level lower in the hierarchy (i.e., the third level) connected to it, also with a point-to-point link, the top level central 'root' node being the only node that has no other node above it in the hierarchy (The hierarchy of the tree is symmetrical.) Each node in the network having a specific fixed number, of nodes connected to it at the next lower level in the hierarchy, the number, being referred to as the 'branching factor' of the hierarchical tree.



1.) A network that is based upon the physical hierarchical topology must have at least three levels in the hierarchy of the tree, since a network with a central 'root' node and only one hierarchical level below it would exhibit the physical topology of a star.


2.) A network that is based upon the physical hierarchical topology and with a branching factor of 1 would be classified as a physical linear topology.


3.) The branching factor, f, is independent of the total number of nodes in the network and, therefore, if the nodes in the network require ports for connection to other nodes the total number of ports per node may be kept low even though the total number of nodes is large – this makes the effect of the cost of adding ports to each node totally dependent upon the branching factor and may therefore be kept as low as required without any effect upon the total number of nodes that are possible.


4.) The total number of point-to-point links in a network that is based upon the physical hierarchical topology will be one less than the total number of nodes in the network.


5.) If the nodes in a network that is based upon the physical hierarchical topology are required to perform any processing upon the data that is transmitted between nodes in the network, the nodes that are at higher levels in the hierarchy will be required to perform more processing operations on behalf of other nodes than the nodes that are lower in the hierarchy. Such a type of network topology is very useful and highly recommended.




No comments:

Post a Comment